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I. INTRODUCTION 

One of the main results in [l] asserts the existence of one system of 
competitive prices supporting an efficient program relative to which the 
transversality condition is satisfied; i.e., the sequence of values of inputs 
converges to zero. In general, however, there may be more than one system 
of competitive prices associated with an efficient program and in fact, 
it is possible that the transversality condition holds for one system of 
competitive prices while it does not hold for another (see the example 
below). It is, therefore, natural to look for conditions that guarantee that 
the transversality condition is satisfied for all the competitive price 
systems supporting an efficient program. The purpose of this note is 
precisely to present such a set of conditions applicable to a fairly extensive 
class of “closed” multisector models. Besides the standard assumptions 
on technology, (like continuity, convexity, constant returns, free disposal, 
and impossibility of free production), we require that the input vectors 
of all the activities in the von Neumann facet be strictly positive. Under 
such conditions, the transversality condition is obtained for all competitive 

* The need to settle the question studied in this note was emphasized by, among 
others, Professor D. Cass in his detailed comments on our earlier paper with Professor 
D. McFadden. Our interest in the role of the transversality condition is surely due to a 
great extent to his related works. An earlier version of the paper was presented at the 
M.S.S.B. Conference held at the Dartmouth College Conference Center in June 1975. 
The present version has benefited from the helpful comments of Professors Cass, 
Shell, and McKenzie and other participants. 
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prices associated with an efficient program. Interpreted from a different 
angle, the main result shows that a competitive program violating the 
transversality condition must necessarily be inefficient. Thus, we have a 
simple and easily applicable criterion for testing the efficiency of a com- 
petitive program. 

While the technique of proof leading to the main result is quite inde- 
pendent of any result derived or discussed in [I], the interested reader 
is referred to that paper for a detailed discussion of the model and the 
related results of Cass, Malinvaud, and others in the published literature. 
It should perhaps be mentioned that in the literature on efficient and 
optimal growth, the “necessity” of the transversality condition-its role in 
signalling capital overaccumulation in competitive programs -has long 
been the subject of much discussion. 

I I. NOTATION 

For any x = (xi) in R”“, x is nonnegative (written x > 0) if xi 2 0; it 
is semipositive (written x > 0) if x 3 0 and x i 0; it is strictly positive 
(written x > 0) if xi > 0 for all i. The set of alf nonnegative (respectively, 
strictly positive) m-vectors is denoted by R,“” (respectively Ry+). The 
m-vector w has 1 in each coordinate. The norm of x (written 1 x I) is chosen 
as 1 x / = XI:, / xi I. For any two nonzero vectors x and x’, the angular 
distance d(x, x’) is given by 

d(x, x’) = 1 x/l x j - x’/l x’ 1 

For any nonempty set F and any vector x in R”, 

c/(x, F) = hlf, d(x, A-‘). 

A sequence p = (p,) of m-vectors is nonzero if pt 1. 0 for at least one t. 

Ill. THE MODEL 

(2.1) 

(2.2) 

We shall recall only the definitions used in the statement of our result, 
and the assumptions needed. As usual, F is the technology, a nonempty 
set in R2,“. The pair (x, y) of m-vectors belong to Y if it is possible to 
transform the input vector x into the output vector y in one period, 
where m is the number of commodities. The four standard assumption 
on Y are: 
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(A.l) T is a closed convex cone in Ry (continuity, convexity, 
constant returns). 

(A.2) “(0, y) E 7 implies “y = 0” (impossibility of free pro- 
duction). 

(A.3) “(x, y) E 9” and “2 3 x, 0 < y’ :< y” imply (x’, y’) E Y 
(free disposal). 

(A.4) - - There is (x, y) E 9 with J > 0 (producibility). 

Our next assumption is related to the nature of the von Neumann 
equilibria associated with zT. It is known that (A.l) through (A.4) imply 
that there is a von Neumann equilibrium, i.e., there exist a semipositive 
input vector 9 > 0, a (finite) positive scalar fi > 0, and a semipositive 
price vector j > 0 such that 

where 

(2, ii*) E F-, jy < @x for all (x, y) E 9, 

ii > A(x, y) for all (x, y) E r-, (3.1) 

h(x, y) = max[h: y > hx; x > 01. 

Without loss of generality i is taken to be equal to 1. Since the von Neumann 
price vector is by no means unique in general, we consider all such price 
vectors. Formally, let us define 

B = {p6Rn’,p >O,lp/ = l,py<pxforall(x,y)~F]. (3.2) 

It is trivial to verify that 9’ is a closed convex set. Recall that the von 
Neumann-McKenzie facet F* is simply defined as the set of all activities 
breaking even at any j in the relative interior of 8, i.e., one has (see 
P, P. 1711) 

F* = {(x, y) E 9: jy = 4x} jbr any $ in the relative interior of P. 
(3.3) 

It is known that F* is a closed convex cone with vertex at (0,O). Our 
next assumption requires that for any activity in F* other than (0, 0), 
the input vector must be strictly positive. Formally, we have 

(A.5) for any (x, y) E F*, with (x, y) # (0, 0), one must have x > 0. 

In particular, the vector L? of von Neumann stocks defined in (3.1) must 
also satisfy 4 > 0. An important consequence of (A.5) is that 

any von Neumann price vector $ is strictly positive. (3.4) 
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If ji = 0 for any i, the activity (x, 0) in Y with xi > 0 and xi = 0 for 
j# i, clearly breaks even at $. Hence it belongs to F*, contradicting the 
strict positivity requirement of (A.5). and we get (3.4). 

It should be emphasized that (A.5) is somewhat restrictive. A few 
remarks relating (A.5) to some well-known conditions in the literature on 
intertemporal resource allocation will be instructive. First, going back 
to (3.1) recall that if the technology Y is such that the pair (a, 8) of von 
Neumann stocks and prices satisfies the famous condition of Mqlle 
profitability introduced by Radner [4], i.e., if one has 

jy - jx < 0 for all (x, y) E T with x not proportional to 2, (3.5) 

the facet F* reduces to a unique ray (2, a). Thus, if the Radner condition 
is satisfied, (A.5) requires that the unique von Neumann stock vector .G be 
strictly positive. The Radner condition and the strict positivity of 3; 
figure prominently in the final state turnpike literature (see [3, pp. 213- 
21 91). In general, a technology 9 satisfying (A. I) through (A.5) will by no 
means satisfy the Radner condition (see [2, p. 1731). 

Second, (A.5) does not imply the condition of output substitution 
discussed in [I]. Let 

7 :~- {(x, y): x > AZ, 0 < y :< Bz for I’ > 0), (3.6) 

A= [i ;], B= [\ ;]. 

Note that the von Neumann stock vector 

1 
.c= 1 [1 1 

is unique, and the facet F* consists only of the ray through (a, a), where 
j = (1, 1, 1) is a von Neumann price vect0r.l The technology, however, 
does not satisfy the condition of output substitution. This can be verified 
easily by considering 

1 Note that 6~ -( $Bz = 3z1 + 3z,/2 and ix > j.4~ = 32, + 22, for all (z, , za) > 0. 
Thus, $.v Q ix with equality holding for z1 > 0 and z2 = 0. 
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and noting that the output of the first commodity cannot be increased 
by reducing the output of the third commodity a little.2 

A number of conditions for special classes of generalized Leontief and 
von Neumann models can be used to guarantee (A.5). The interested 
reader is referred to the extended discussions in [2, 31. 

A feasible production program from x is a sequence (x, J’) = (-yt , +I’~,.~) 
such that 

so = x, .x-t < .)‘t for all t 3 1. 

(xt . .l’t+1) E 9- for all I > 0. 

The consumption program c =: (c,) generated by (x, ~1) is defined as: 

Ct = J’t - xt (2 0) for all t > I. 

(3.7) 

(3.8) 

We refer to (x, y, c) as a feasible program x, it being understood that (x, y) 
is a production program and c is the corresponding consumption program. 
A feasible program (x*, JJ*, c*) from x is ej%ient if there is no other 
feasible program (x, 11, c) from x such that ct > ct* for all t and ct > ct* 
for some t. A feasible program (x*, I’*, c*) is competitive if there is a 
nonzero sequence (pt*) of nonnegative price vectors such that for all 
t 3 Oone has 

0 =- p;“+,y,*,l - pt*st* 2 p;~lJ’ - pt*s for all (s, 2’) in F. (3.9) 

In other words, the intertemporal profit maximization condition (3.9) is 
satisfied for all t. A competitive program (x*, y*, c*) satisfies the trans- 
versality condition if pt*x,* goes to zero as t goes to infinity. 

IV. THE NECESSITY OF THE TRANSVERSALITY CONDITION 

We are now in a position to state and prove the main result. Under 
(A.l) through (A.5), let (x*, y*, c*) from x > 0 be efficient and com- 
petitive at prices (p,*j satisfying (3.9). Then the transversality condition 
is necessarily satisfied. Thus, the asymptotic behavior of pt*xt* (the value 
of inputs at the competitive prices) is intimately related to the question 
of inefficiency of a competitive program due to capital overaccumulation 
Recall that if the competitive prices ( pl*? associated with a given feasible 

2 We cannot use the first activity af all in achieving this substitution, since reduction 
of the output of the third commodity does not generate any surplus input of the first 
commodity, which is essential for using the first activity. On the other hand, using the 
second activity alone, such substitution is impossible due to fixed proportions. 
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program are all strictly positive the transversality condition is sufficient 
for efficiency. On the other hand, failure of the transversality condition 
signifies inefficiency of a given competitive program. 

THEOREM 4.1. Under (A.]) through (A.5) let (x*, y*, c*) be an eficient 
program from x > 0 and (p,*> be a nonzero sequence of competitive prices 
satisfying.for all t 2 0 

0 = P,*,,YL - Pf*xt* 3 Pt*+IY - pt*x for all (x, v) E 9. (4.1) 

It follows that 

hi pt*xt* = 0. (4.2) 

For a convenient organization of the proof, let us note three preliminary 
results that provide us with three key steps. 

PROPOSITION 4.1. For any E > 0 there is 6 > 0 such that d[(x. y); F*] > E 
implies 

fJy < (1 - 6)$x. (4.3) 

Proof. This, of course, is the famous value-loss lemma of the turnpike 
literature. This version is in [2, Lemma 41. Q.E.D. 

PROPOSITION 4.2. There is LX > 0 such that “(x, y) E F*, 1(x, y)i = 1” 
implies j x / > iy. 

Proof. If not, there is a sequence (xn, y”) E F* with I(xn, y’“)j = 1 
and lim,,, 1 xn / = 0. But (y”) being bounded, one has a subsequence 
(x”‘, y”‘) in F*, 1(.P’, y”‘)i = 1 converging to (x, y) in F*, with x = 0 
and / y 1 + 0. This contradicts (A.2). Q.E.D. 

PROPOSITION 4.3. There is e, = (e, ,..., e,) ;- e,w > 0 such that 
“(x, y) E F*, 1(x, y)] = 1” implies x 3 e,w. 

Proof. Note that the set 

C, = {x E R+nL: forsomey>O,(x,y)EF*,/xj =a} (4.4) 

is a compact subset of R”” contained in Ry+ . It is obviously bounded, and 
by (A.5) is contained in R+mt . To show that it is closed, take a sequence 
xn in C, converging to some x > 0. Clearly / x I = 01. By definition of 
C, , there is a corresponding sequence y’l > 0, such that (xn, yn) E F*. 
Recall that / xn I = 01, implies that (y”) is bounded (see [4, p. 1021.) 
Hence there is a convergent subsequence (x”‘, y”‘) tending to some 
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(x’, y’). Since F* is closed, (x’, y’) E F*. Since xll converges to x, any sub- 
sequence x’“’ must converge to x, so that x = x’. Thus, (x, y’) E F*, and 
1 x / = 01 imply that x E C, , completing the proof of closedness. 

As C, is a compact subset of Ry+ , it can be covered by ajinite number 
of closed balls each of which is also contained in R,” . Hence it is obvious 
that there is some e,w > 0 such that x E C, implies x > e,w. If (x, y) E F* 
and 1(x, ~)i = 1, one has / x 1 3 01 by Proposition 4.2. Note that if for 
any(x,y)EF*J(x,y)l=loneinfacthasIx/ >ol,wecanfindfl>O 
and /3 < 1 such that / /3x 1 = a. Since F* is a cone, (/3x, P.v) E F* so that 
/3x E C, . Hence px > e,w and x 2 (l/p) e,w > e,w. Q.E.D. 

Proof of Theorem 4.1. The difficult step in the proof is the assertion 

Lim inf 1 xt* 1 = 0. (4.5) 

Postponing the proof of (4.5) for the moment, let us see how (4.2) follows 
from (4.5). Since (4.1) is satisfied, one has for any finite T 

T  

0 < p7.*xr* = po*x - c pt*ct*. (4.6) 
t=1 

Since ST = Crzlpt*ct* is monotonically nondecreasing and bounded 
above by p,,*x, lim,,, C,‘=, pt*ct* exists. This in turn implies from (4.6) 
that lim,,, pr*xr* exists, and of course, lim,,, pr*xr* > 0. 

Consider any von Neumann stock vector .G > 0. Recall that the von 
Neumann growth factor in 9 is taken to be equal to 1, so that (a, 2) E .Y. 
We use (4.1) to have 

pL16 < pt*4. (4.7) 
Hence for all t 3 0, 

p,*[(m:n ai) w] < pt*i < pO*i. (4.8) 

From (4.8) we get / pt* / < (p,,*g/mini ai) = A, say. Hence, we have 

0 < pt*xt* .< I pt* I I xt* 1 < A I xt* I. (4.9) 

But the right side in (4.9) goes to 0 along a subsequence in view of (4.5). 
Hence, pt*xt* goes to 0 along a subsequence. As lim,_, pr*xr* exists, 
we must have lim T+m pT*xT* = 0, establishing (4.2). 

Turning to the demonstration of (4.5) our strategy is to arrive at a 
contradiction by supposing that (4.5) does not hold. If (4.5) does not 
hold. there is some 01’ > 0 and some T’ > 0 such that 

/ xt* 1 > a’ for all t > T’. (4.10) 
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There are three main steps leading to a contradiction from (4.10). We 
take them in the following order: 

Step 1. We have to show that (4.10) implies that 

‘,im d[(.u t*, 4’t++1); F”] = 0. ? (4.11) 

Step 2. By using Proposition 4.3 we have to prove that (4.10) and 
(4.11) imply that there is some e = ew > 0 and some TO > T’ such that 

xt* 3 e> 0 for all t > TO. (4.12) 

Step 3. Using (4.12) and (4.10). construct a feasible program (3i*,y, E) 
from x > 0 such that 2, > ct* for all t and Clt > ct* for at least one t. 
This means that (x*, JJ*, c*) is not efficient, a contradiction that establishes 
(4.5). 

To fill in the details of Step 1, suppose that (4.1 1) is false. This means 
that for some E > 0 

d[(x,” ? da F*l 3 E for an infinite number of periods. (4.13) 

Among the first T periods, let N(T) be the number of periods in which 
(4.13) holds. One has, from (3.1) (recall that fi = l), 

and jyl* < ix,*_1 for all t, since (x& , yt*) E F. Now, for each of the 
N(T) periods in which (4.13) is supposed to hold, Proposition 4.1 can be 
applied to get 

0 < ; jc* * < ax - N(T) 8($x1*-1) - fmr*. (4.15) 
f=l 

As $ > 0, and for t > T’, / xt* / > CL’, by (4.10) if N(T) goes to infinity 
with T, the right-hand side is negative for a sufficiently large N(T), whereas 
the left side is always nonnegative, a contradiction establishing (4.11). 

Coming to Step 2, observe that if (xt*, y,*,,) E F* for some 2 > T’, then 
by following the argument used in Proposition 4.3 (with 01 replaced by LX’ 
in (4.4)), we get some e,,w > 0 such that xt* > e,‘w for any such t. To 
extablish (4.12), therefore, one can just as well assume that (xi*, Y,*,~) 
does not belong to F* for any t. Choose E > 0 such that E < e,/2 where 
e, > 0 is given by Proposition 4.3. Given this E > 0, according to (4.11), 
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there is some & > T’ such that for each t > T,, , there is (xt , y,,,) E F* 
such that 

4(-G*, Y,*,A (.Yf 1 3’t ?I)1 < E. (4.16) 

Since F* is a cone, we can take I(xt , y,+J = 1 without loss of generality 
(recalling the definition (2.1) of the angular distance used above). Now, 
(x, , J’,+J E F* and l(.yt. yr+i)l = 1 implies by Proposition 4.3, 

xt 3 e,w > 0 for all t > To . (4.17) 

But according to (4.15) and the fact that 1(.x,*, v;“+J > 1 xt* 1 > 01’, 

for t > T,, , X,*i/l(Xt*, yt*,,>l - Xti 1 < E for all i; 

of, 

for t&T,,, .YTi > l(Xt*. y:+,)l (Xt’ - E) for all i; (4.18) 

or, 
for t>T,, xTi > a’(ec - c) = e 1 0 for all i. 

This completes the proof of (4.12). 
For constructing a program (2, $, 2) that would contradict the efficiency 

of (x*, y*, c*), note that R < (max, z?) w implies that w > 2/max, ii. 
Hence for all t > T,, , 

.xt* > ew 3 e[g/mFx .+?I > m.?, (4.19) 

where m = e/maxi Pi. Since j > 0, and from (4.13), cL,$q* < $x, 
we have Cz, I ct* / < A4 where A4 is a (finite) positive number. It follows 
that there is t’ 3 T, such that 

,=g+, I ct* l/mjn .Gi < m/2. (4.20) 

Setting et* = I ct* I/mini ii, we can rewrite (4.19) as 

f Ot* < m/2. 
t=t’+l 

(4.21) 

We now construct a program ($7, E) from I > 0 as follows: 

(4 -* - 2, = xt*,yt - yt*, c”, = et* for 1 = I,..., t’ - 1, 

@I Yt, = YC , .Cp = (m/2) 9, ttf = jTt, - &, , 

(c) ,Gt = sql ) 
t 

St = [m/2 - Xs=if.,l B,s*] i,?, = yt - .Gt for t > t’. 
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In order to check that the program is feasible we proceed as follows: 

(1) Nonnegativity: Obvious for t < t’ - 1. 

For t = t’, note that Et, = j,, - 1,, = y: - (m/2) 2 = (c; + x,“;) - 
(m/2) 9 > (c: + ma) - (m/2) i > cc 3 0. Also, it is clear that xc > 0 
and JJ$ > 0. For t > t’, X, > 0, since C:=,,+, B,* < m/2 (by 4.21)) and 
q = r”t - 2, = bc-1 - R, = e,*i > 0. 

(2) (a, ,jjt,l) E 5, for all t > 0, since this is obvious for t < t’ - 1, 
and for t >, t’, (3, ,yt-J E 7 as 5, is proportional to 9, and 9 is a cone 
containing (2, a). 

(3) Obviously, yt = d, + Z, . Thus we see that (2, y, E) is feasible 
from x. Finally, c”f = ct* for t = l,..., t’ - 1; 2,~ > cl’ (as verified in (1) 
above); for t > t’, Zt =pt - 5, = Z’t-l - 5, = Bj*? = [I ct* I/mini 91 2 > 
[I ct* I/min, 9][mini 90~1 = 1 ct* / w 3 ct*. 

Hence (.x*, y*, c*) is inefficient, completing the proof of Theorem 4. I. 
Q.E.D. 

Remark. It is instructive to look at an example of an efficient program 
that satisfies the transversality condition at one system of competitive 
prices, while violating it at another. Note that in this example, (A.5) 
is not satisfied. Y = {(x, v): Bz 3 y, AZ < x for some z 2 0). where 

1 1 

A== 

1 0 

[ 1 ol and B=O [ 2 T  1 ,. 

Here 9 = [j] (= 2) is a von Neumann stock vector, and j = [0, l] a 
von Neumann price vector. Let x = [f] be the initial stock vector. Define 
xt* = [y], for all t > 1, yl* = [i] and J$+~ = [f] for all t > 1, cl* = [i] 
and c* t+l = [,#I for all t >, I. This program is efficient. Two competitive 
price systems are (a) pt* = Jo for all t > 0, and (b) qo* = (&, )), 
ql* = (1, 0), qt* = (0, 0) for all t >, 2. Clearly the transversality con- 
dition does not hold for the price system (a), while it does for the price 
system (b). Since much has been aid about characterizing efficiency in terms 
of present value maximization, note that the efficient program of this 
example actually minimizes the value of consumption over the set of all 
feasible consumption sequences at the price system (a). 

1. M. MAJUMDAR, T. MITRA, AND D. MCFADDEN, Efficiency and Pareto optimality 
of competitive programs in closed multisector models, J. Econ. Theory 13 (1976). 
26-46. 



CAPITAL OVERACCUMULATION 57 

2. L. MCKENZIE, Turnpike theorems for a generalized Leontief model, Econometrica 
31 (1963), 165-180. 

3. H. NIKAIDO, “Convex Structures and Economic Theory,” Academic Press, New 
York, 1968. 

4. R. RADNER, Paths of economic growth that are optimal only with regard to final 
states: A turnpike theorem, Rev. Econ. Stud. 28 (1961), 98-104. 


